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1. Introduction 

 

The mathematical modeling of some real processes leads to the investigation 

of boundary value problems for nonlinear differential equations. The wide 

application of boundary value problems in fluid mechanics, mathematical physics, 

and other scientific fields has made the study of these problems an important 

branch of science. It is possible to detail [2,5,19,20] applications in this context.  

Classical boundary conditions do not take into account some important 

characteristics of certain processes. This leads to the emergence of nonlocal 

boundary conditions. Nonlocal conditions establish a relationship between the 

boundary values of the sought solution and the interior points of the domain.   

Boundary value problems for first  order differential equations have been 

studied in [3,12-15,21]. Boundary value problems for second order differential 

equations have been studied in [1,4,6-9,11,16,17, 18, 22, 23]. 

2. The formulation of the problem and preliminary results. 

 

In this article, we will investigate the existence and uniqueness of the 

solution for a second order nonlinear differential equation with nonlocal conditions 

as follows. 

Let us assume that   

                                      (1) 
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a system of differential equations is given. Here,  is a given 

continuous function, and  ,  are constant matrices. 

Lemma.  Let us assume that   and  

Then, the solution of the problem (1) is  

                           (2) 

Proof.  let us integrate the equality  from 0  to t . As a 

result,  

                                                (3) 

we obtain , where    is an unknown    dimensional constant vector. 

 
using the condition, we can determine the vector   . It is clear that    

 

From here,  

                               (4) 

Now, by considering the equality (5) in (4), then  

               (5) 

The final equation let’s integrate equation (5) again from 0 to t                          

 

We will obtain the equation. If we consider the condition , we obtain 

equation (2). The lemma is proved. 

 Let’s introduce the   operator as follows. Here  

     (6) 

 If we consider the lemma we proved above, problem (1)  

                                                         (7) 

is equivalent to the operator equation. 

As it can be seen, the fixed point of operator (6) is a solution to the 

operator equation (7) or problem (1). 

 

3. The existence of the solution. 

 

In this section, we will find a sufficient condition for the existence of a 

solution to problem (1). For this, we will use Krasnoselskii’s fixed point theorem.  

Theorem 1. (Krasnoselskii’s fixed point theorem) [10]. Let   be a closed 

bounded, convex, and nonempty subset of a Banach space X. Let   be the 

operators mapping  into  such that  

(i)    whenever ; 

(ii)    is compact and continuous ; 

(iii)   is a contraction mapping.  

Then there exists   such that  
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    Theorem 2. Let us assume that   the function  is 

continuous and satisfies the following conditions: 

    (A1) ; 

    (A2) There exists a function  such 

that , 

  

If   

                                                                                                                   (8) 

holds, then there exists at least one solution to the boundary problem (1) on the 

interval . 

Proof.    let’s consider the closed sphere. Here,  

 

                                                     (9) 

Let’s define the operators   and   defined on the sphere  

, 

. 

Show that   

For any  

 

 

 
Since     holds, the condition (i) of Krasnoselskii’s theorem is 

satisfied. Using the condition (A1) 

= 

 

 
Since condition (8) is satisfied, it follows that the    operator is compact. 

Now, let us show that the     operator is completely continuous, meaning it is 

compact and continuous. Note that the continuity of the function    implies that 

the    operator is continuous. It is also clear that the   operator is uniformly 

bounded on  and  

 
Let us assume that    and     Then  
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The last relation  is independent of .  Thus, all conditions of 

Krasnoselskii's theorem are satisfied. 

Therefore, there exists at least one solution to the nonlocal boundary 

problem (1). 

 

4. The uniqueness of the solution.  

 

In this section, we will find sufficient conditions that ensure the uniqueness 

of the solution to the nonlocal boundary problem (1) with the help of Banach's 

fixed-point principle [10]. 

Theorem 3. Let us assume that   is a continuous 

function and the condition (A1) is satisfied.  If   

 
holds, The boundary problem (1) has a unique solution on the interval  , here, 

 is defined by the expression (9). 

Proof.    let us note.     let us note and 

show that   , here = .  Any   and   

 

 
the inequality is true.  Then,  for    

 

 
Here,  is defined by the expression (10). This relation shows that  , 

Now, let us show that the operator  is a contraction. Any for     
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It follows from condition   that  the operator  is a contraction. 

Thus, all the conditions of Banach's fixed-point theorem are satisfied, and as a 

result, it follows that the nonlocal boundary problem (1) has a unique solution on 

the interval  

Now, investigate the continuous dependence of the solution of problem (1) 

on the right-hand side of the boundary condition. 

Theorem 4. Assume that condition (A1) holds and . Then, for any 

  and the corresponding  

                               

   (10) 

for the solutions  and  of the border issue 

 
is correct. 

 Proof. Assume that   is arbitrary points,  and are 

solutions to the corresponding boundary problem. Then  

 
              

                   (11) 

From this equality 

 
. 

from here,  
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The theorem is proved. 

 

5. Conclusion. 

In the paper, a boundary value problem with a nonlocal condition 

involving a small point has been studied. By imposing certain conditions on 

the initial data and applying Krasnoselskii’s fixed point theorem, sufficient 

conditions for the existence of at least one solution to the boundary value 

problem have been established. Using Banach’s contraction mapping 

principle, the existence of a unique solution to the considered boundary 

value problem has been proven. 

The scheme used in the paper can be applied to more general 

boundary value problems. For example, consider the following nonlocal 

boundary value problem. 

 

                             

                             
Here,          is a 

continuous function.    
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